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Contributions Results

blocks w/ fused & quantized layers

More results are in our paper!

1. We develop Q-Palette, a set of versatile rotation-based quantizers with : — — —
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Figure 1. Performance trade-offs under different constraints (LLaMA 3.1-8B, RTX4090 GPU).
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Motivation
* Recent quantization methods utilize rotation to Gaussianize OB S
weights, reducing outliers. .
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Figure 2. Gaussian quantization
L9 error of Q-Palette quantizers.
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Figure 3. Memory-constrained

+ Assuming ideal Gaussian quantizers that achieve the optimal  msq results for different

distortion bound, the optimal bit allocation is given by quantizer sets (LLaMA 3.1-8B).
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« However, in practice, quantization is performed with a set of non-ideal quantizers, and the

performance gap is given by 1) how closely each quantizer approaches the distortion bound,
and 2) how finely the available bitwidths approximate the optimal bit allocations, motivating
the design of Q-Palette (Sec 3.2).

Fusion-aware MSQ

+ We propose fusion-aware MSQ, a novel MSQ framework that jointly optimizes

quantization with the additional design dimension of layer fusion. (see Overview)

» Fusion-aware MSQ simultaneously determines 1) how to group layers for fusion and 2)

which quantizer to assign to each fused group, encoded by Fyq.

 The fusion-aware MSQ problem is formulated as
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+ Here, G denotes the set of all fusible layer groups, where each group consists of linear

layers sharing the same input (e.g., Q, K, V layers in the same Transformer block).

+ The problem above is ILP and can be solved by solvers such as SCIP solver.



