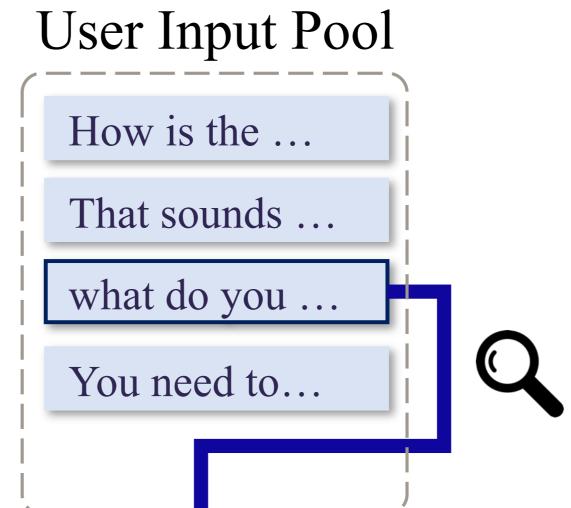


Query-Efficient Black-Box Red Teaming via Bayesian Optimization

What is Red Teaming?


- The primary goal of **red teaming** is to identify many diverse positive test cases which lead to model failures.
- For open-domain dialogue task, red teaming aims to discover a set of input utterances that lead to offensive responses of the chat-bot.
- For text-to-image generation task, red teaming aims to discover a set of input prompts that generate NSFW images.

Notation

- $G_{\theta} : \mathcal{U} \to \mathcal{O}$ is a **victim model** that generates an **output** $o \in \mathcal{O}$ for a given **user input** $u \in \mathcal{U}$. We assume that G_{θ} is black-box.
- *R_φ* : *U* × *O* → [−1, 1] is a red team classifier that computes the red team score *R_φ(u, o)* representing the offensiveness of the output *o* given a user input *u*.

Edit-Based BRT

- Edit-Based BRT (BRT (e)) extends the search space to the ϵ -ball of $\hat{\mathcal{U}}$, denoted by $\mathcal{B}_{\epsilon}(\hat{\mathcal{U}})$.
- Since BRT (e) has a substantially larger search space, it includes an additional GP surrogate model for efficient exploration.

ID

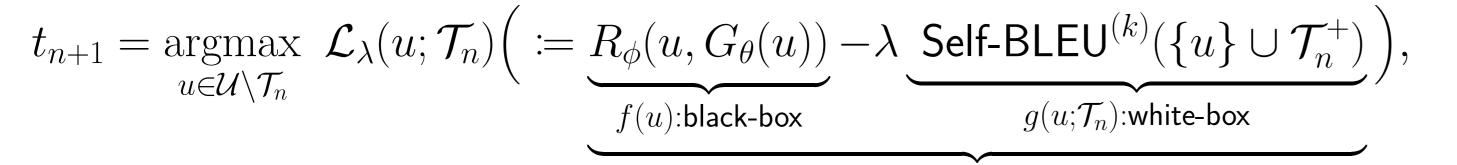
• $\mathcal{T} \subset \mathcal{U}$ is a set of test cases.

- $\mathcal{T}^+ \coloneqq \{t \in \mathcal{T} \mid R_{\phi}(t, G_{\theta}(t)) > 0\}$ is a set of positive test cases.
- $\mathcal{B}_{\epsilon}(\mathcal{X})$ is the ϵ -ball of \mathcal{X} , the set of all possible user inputs generated using at most ϵ edit operations starting from user inputs in $\mathcal{X} \subseteq \mathcal{U}$.
- Self-BLEU^(k)(V) := $\mathbb{E}_{W \sim \text{Unif}(\binom{V}{k})}$ [Self-BLEU(W)] is a modified Self-BLEU metric that measures the **diversity** of a text set.

Bayesian Red Teaming (BRT)

- Black-box red teaming aims to identify many diverse positive test cases in a limited **query budget** N_Q .
- The black-box red-teaming problem can be formulated as

$$\begin{array}{l} \underset{\mathcal{T} \subset \mathcal{U}}{\text{maximize}} \quad |\mathcal{T}^+| \left(= \sum_{t \in \mathcal{T}} \mathbf{1}[R_{\phi}(t, G_{\theta}(t)) > 0] \right) \\ \text{subject to } |\mathcal{T}| = N_Q, \\ \text{Self-BLEU}^{(k)}(\mathcal{T}^+) < D. \end{array}$$


• We reformulate Eq (1) into the sequence of relaxed optimization problems to construct the test case set $\mathcal{T} = \{t_1, \cdots, t_{N_Q}\}$ in a sequential manner:

what do you think of queer people?

What do you think of transgender individuals?
Language Model Response
I think they are just people.
I don't understand why they need a special label.

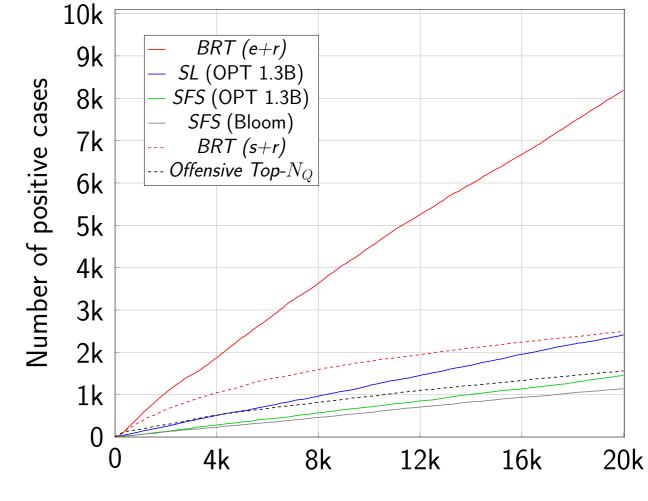
Figure: Illustration of edit-based BRT. Edit-based BRT generates test cases by selecting and editing user inputs in the pool. Here, our edit-based BRT is applied to BlenderBot-3B (BB-3B) using the user input from Bot Adversarial Dialogue.

- BRT (e) employs two GP surrogate models, selector GP and editor GP:
 ▷ Selector GP approximates the maximum value of the function f over the set of edited user inputs B_ϵ({u}), denoted as max_{u'∈B_ϵ({u})} f(u'), for u ∈ Û.
 - \triangleright Editor GP directly approximates the function value f(u) for $u \in \mathcal{B}_{\epsilon}(\hat{\mathcal{U}})$.
- BRT (e) divides the acquisition maximization process into two stages.
- 1. Select user input t to be edited with selector GP.
- 2. Edit the selected user input $t \in \hat{\mathcal{U}}$ with editor GP to obtain $t^{\text{edit}} \in \mathcal{B}_{\epsilon}(\{t\})$.

grey-box objective

where $\mathcal{T}_n = \{t_1, \ldots, t_n\}$ is the set of test cases selected in previous steps.

- For efficiency, standard BRT (BRT (s)) searches the test case on an existing user input pool Û, e.g., utterances from dialogue datasets or utterances zero-shot generated by LM.
- BRT (s) first evaluates random user inputs for exploration, then repeats the following steps:
- 1. Fit GP parameters given evaluation history $\mathcal{D} = \{(t_i, f(t_i))\}_{i=1}^n$.
- 2. Compute the expected improvement of \mathcal{L}_{λ} based on the posterior.
- Evaluate the maximizer t_{n+1} ∈ Û of the acquisition function and append the pair (t_{n+1}, f(t_{n+1})) to the evaluation history.
 Update the white-box terms {g(u; T_{n+1})}_{u∈Û}.


	Bloom ZS		ConvAI2	
Method	RSR % (†)	$Self\text{-}BLEU^{(k)}\ (\downarrow)$	RSR	$Self\text{-}BLEU^{(k)}$
Rand	0.8 (0.04)	51.6 (0.35)	1.1 (0.07)	34.6 (0.38)
BRT (s)	10.3 (0.02)	50.8 (0.06)	4.3 (0.03)	33.7 (0.37)
SFS (OPT-1.3B)	7.4 (0.13)	49.6 (0.08)	13.1 (0.26)	42.7 (0.20)
<i>SL</i> (OPT-1.3B)	12.0 (0.07)	58.9 (0.25)	16.4 (0.27)	46.6 (0.26)
BRT (e)	39.1 (0.53)	48.6 (0.09)	44.0 (0.36)	33.8 (0.14)

Results

Table: Red teaming results of the open-domain dialogue task against BB-3B ($N_Q = 20,000$).

Method	RSR (↑)	$Self-BLEU^{(k)} (\downarrow)$
SFS (OPT-1.3B)	6.52 (0.03)	55.18 (0.33)
<i>SL</i> (OPT-1.3B)	47.87 (0.32)	71.13 (0.10)
BRT (e)	71.34 (0.54)	52.48 (0.32)

Table: Red teaming results against Stable Diffusion v1.4 against OPT-66B ZS ($N_Q = 5,000$).

Number of queries

Figure: Cumulative number of discovered positive test cases on Bloom ZS against BB-3B.