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Summary

• We propose a Blockwise Bayesian Attack (BBA), a novel query-efficient and scalable
black-box attack framework based on Bayesian Optimization (BO).

• We propose a post-optimization technique which reduces the perturbation size.
• BBA achieves higher attack success rate (ASR) with considerably less modification rate

(MR) and fewer required queries (Qrs) on all experiments we consider.

Adversarial Attack on Discrete Sequential Data

• Neural networks on discrete sequential data have exhibited vulnerability against
adversarial examples that are artificially crafted to fool the networks by adding
perturbations imperceptible to humans.

Adversarial Examples of Our Method (BBA)
• An Example on Document-Level Classification Dataset (Yelp) against BERT

▷ Original Sequence:
Food is fantastic and exceptionally clean ! My only complaint is I went there with my 2 small
children and they were showing a very inappropriate R rated movie ! (LABEL: Positive)

↓ Our Method (BBA)

▷ Adversarial Sequence:
Food is gorgeous and exceptionally unpolluted ! My only complaint is I went there with my 2 small
children and they were showing a very inappropriate R rated movie ! (LABEL: Negative)

• An Example on Protein Classification Dataset (EC50) against AWD-LSTM
▷ Original Sequence:
MATPWRRALLMILASQVVTLVKCLEDDDVPEEWLLLHVVQGQIGAGNYSYLRLNHEGKIILRMQSLRGDAD
LYVSDSTPHPSFDDYELQSVTCGQDVVSIPAHFQRPVGIGIYGHPSHHESDFEMRVYYDRTVDQYPFGEAA
YFTDPTGASQQQAYAPEEAAQEEESVLWTILISILKLVLEILF (LABEL: Non-Enzyme)

↓ Our Method (BBA)

▷ Adversarial Sequence:
MATPWRRALLMRLASQVVTLVKCLEDDDVPEEWLLLHVVQGQIGAGNYSYLRLNHEGKIILRMQSLRGDAD
LYVSDSTPHPSFDDYELQSVTCGQDVVSIPAHFQRPVGIGIYGHPSHHESDFEMRVYYDWTVDWYPFGEAA
YFTDPTGASQQQAYAPEEAAQEEESVLWTILISILKLVLEILF (LABEL: Enzyme)

Black-Box Attacks

• Adversary can only observe the predicted class probabilities on inputs with a limited
number of queries to the network.

• Black-box attack is challenging but is a more realistic scenario since, for many
commercial systems [1, 2], the adversary can only query input sequences and receive
their prediction scores with restricted resources such as time and cost.

Objective

• We focus on black-box adversarial attacks on discrete sequential data.
• We aim to propose a new framework that finds adversarial examples with smaller

perturbation size using less number of queries compared to existing methods.

Notation
• s = [w0, . . . , wl−1] ∈ X l is an original sequence and y is its corresponding label.
• C(wi) ⊆ X is a set of semantically similar candidates of wi.
• fθ(s) : X l → R|Y| is a target classifier.
• dH(s, s′) is the Hamming distance between two sequences.
• L(fθ(s′), y) ≜ maxy′∈Y ,y′ ̸=y fθ(s′)y′ − fθ(s′)y is the attack criterion.

Problem Formulation

• Following prior works, we consider the product space of synonym sets ∏l−1
i=0 C(wi) as the

attack space and aim to find an adversarial example s′ that minimize the Hamming
distance dH(s, s′) [3, 4, 5].

• Note that we mainly consider 3 types of C corresponding to 3 word substitution
methods based on Embedding [3], WordNet [4], and HowNet [5].

• Formally, the objective can be written as the following optimization problem:
minimize

s′∈
∏l−1

i=0 C(wi)
dH(s, s′)

subject to L(fθ(s′), y) ≥ 0.

Blockwise Bayesian Attack Framework
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Figure 1: The overall process of BBA. A green arrow with a dataset Dsub
k denotes the

Bayesian optimization step for the block Mk using Dsub
k as the initial dataset.

• BBA divides the problem into two steps.
▷ Finding an adversarial sequence.
BBA conducts BO to maximize L(fθ(·), y) until finding an adversarial sequence.
▷ Post-optimization process.
BBA reduces the Hamming distance between the perturbed sequence and the original sequence while
maintaining feasibility.

• BBA devises several techniques for the scalability.
▷ Block decomposition.
Solve the high query complexity problem (curse of dimensionality) in BO when the input is long.
▷ History subsampling.
Solve the high computational complexity problem in BO w.r.t. the number of evaluations.

Surrogate Model and GP Parameter Fitting

• BBA uses a categorical kernel with automatic relevance determination of the form

Kcate(s(1), s(2)) = σ2
f

l−1∏
i=0

exp
− 1[w(1)

i ̸= w
(2)
i ]

βi


to automatically determine the degree to which each input dimension is important.

• The surrogate model g can be written by
g(X) ∼ N (η, Kcate(X, X ; {βi}, σ2

f) + σ2
nI).

• BBA updates GP parameters to the maximizer of the posterior probability
p(η, {βi}, σ2

f , σ2
n | D).

Block Decomposition (BD)

• BBA divides the input sequence of length l into ⌈l/m⌉ disjoint blocks {Mk}⌈l/m⌉−1
i=0 of

length m.
• At the start of each iteration, BBA assigns an importance score to each block.
• Then, BBA sequentially optimizes each block in order of decreasing importance score.
• Importance score.

▷ First iter: change in objective after deleting the block.
▷ Remaining iters:

∑
i∈Mk

1/βi.
• BO on each block has a bounded search space size. Hence, BD can solve the high

query complexity problem.

History Subsampling (HS)

• Fitting the GP model requires the matrix inversion of the kernel, whose computational
complexity is O(n3) where n is the number of evaluations so far.

• To this end, BBA only uses a subset of evaluations to fit GP model.
• BBA adopts Subset of Data (SoD) method with Farthest Point Clustering (FPC) for

the subsampling technique and achieves O(1) computational complexity w.r.t. the total
number of evaluations.

Post-Optimization Process

Figure 2: The reduced attack space
used in the post-optimization process.

• Post-optimization process finds an adversarial
sequence with a smaller MR.

• BBA repeatedly conducts BO on
establish smaller MR︷ ︸︸ ︷

BH(s, dH(s, sadv) − 1) ∩
optimize near sadv︷ ︸︸ ︷
BH(sadv, r)

to find a new sadv with a smaller MR.

• If we find a new adversarial sequence, we
replace the current adversarial sequence with
the new sequence and repeat the step above
until the halting condition holds.

Results

C Model Method ASR (%) MR (%) Qrs
WordNet BERT-base PWWS 57.1 18.3 367

BBA 77.4 17.8 217
LSTM PWWS 78.3 16.4 336

BBA 83.2 15.4 190
Embedding BERT-base TF 84.7 24.9 346

BBA 96.0 18.9 154
LSTM TF 94.9 17.3 228

BBA 98.5 16.6 142
HowNet BERT-base PSO 67.2 21.2 65860

BBA 70.8 15.5 5176
LSTM PSO 71.0 19.7 44956

BBA 71.9 13.7 3278

C Model Method ASR (%) MR (%) Qrs
WordNet BERT-base PWWS 94.3 7.6 1036

BBA 99.2 7.4 486
LSH 92.6 9.5 389
BBA 98.8 8.8 271

Embedding BERT-base TF 93.5 11.1 461
BBA 99.8 9.6 319
LSH 94.7 8.9 550
BBA 99.8 8.6 403

HowNet BERT-base PSO 98.8 10.6 86611
BBA 98.8 8.2 283
LSH 93.9 8.0 533
BBA 98.2 7.4 353

(a) AG’s News (b) Yelp Polarity
Table 1: The main attack results on text classification datasets. ‘WordNet’, ‘Embedding’, and ‘HowNet’ denote the type of C.
BBA significantly outperforms all the baseline methods in all the evaluation metrics for all datasets and victim models we consider.
We note that PWWS, TF, and LSH are greedy-based methods and PSO is an evolutionary method.
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Figure 3: The cumulative distribution of the number of queries required for the attack methods against a BERT-base model on
the Yelp dataset. We use the HowNet based word substitution when comparing our method against LSH. The results show that
BBA finds successful adversarial texts using fewer queries than the baseline methods.
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Figure 4: The cumulative runtime versus the number of queries plot. HS in
the legend denotes history subsampling, and m = k in the legend denotes
block decomposition with the block size k. We select the texts from the Yelp
dataset.

Level 0 Level 1 Level 2
Method ASR MR Qrs ASR MR Qrs ASR MR Qrs

TF 83.8 3.2 619 85.8 3.0 584 89.6 2.5 538
BBA 99.8 2.9 285 99.8 2.3 293 100.0 2.0 231

Table 2: Attack results against AWD-LSTM models on the protein
classification dataset EC50 level 0, 1, and 2.
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Figure 5: The cumulative distribution of the
actual runtime required for the attack methods
against XLNet-large on Yelp. The result shows that
BBA consistently finds successful texts faster than
PWWS. Refer to Table 3 below for the detailed
attack results.

Dataset Model Method ASR (%) MR (%) Qrs
Yelp XLNet-large PWWS 94.5 10.8 1107

BBA 98.2 9.4 485

Table 3: Attack results against XLNet-large on
Yelp. We use C based on WordNet.
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